So I have translated the non-recursive 1 insertion and selection sort to Morte. The idea was to check if they both reduce to the same highly optimized code. It turns out that they do not. I will reproduce the code here anyway because I might have made a mistake or it is useful to someone else.
-- Foreign imports
( \(a : *)
-> \(min : a -> a -> a)
-> \(max : a -> a -> a)
->
-- Module definitions
( \(L_a : * -> *)
-> \(Mu : (* -> *) -> *)
-> \(Nu : (* -> *) -> *)
-> \(fmapL :
forall (x:*) ->
forall (y:*) ->
(x -> y) ->
L_a x ->
L_a y)
-> \(fold :
forall (f : * -> *) ->
forall (x:*) ->
(f x -> x) ->
Mu f -> x)
-> \(wrap :
forall (f : * -> *) ->
(forall (x:*) ->forall (y:*) -> (x -> y) -> f x -> f y) ->
f (Mu f) ->
Mu f)
-> \(unfold :
forall (g: * -> *) ->
forall (s:*) ->
(s -> g s) ->
s ->
Nu g)
-> \(unwrap :
forall (g : * -> *) ->
(forall (x:*) -> forall (y:*) -> (x -> y) -> g x -> g y) ->
Nu g ->
g (Nu g))
-> \(swap :
forall (x:*) ->
L_a (L_a x) ->
L_a (L_a x))
->
-- Insertion sort
fold L_a (Nu L_a) (
unfold L_a (L_a (Nu L_a)) (\(s : L_a (Nu L_a)) ->
swap (Nu L_a) (
fmapL (Nu L_a) (L_a (Nu L_a)) (unwrap L_a fmapL) s)))
-- Selection sort
-- unfold L_a (Mu L_a) (
-- fold L_a (L_a (Mu L_a)) (\(f_x : L_a (L_a (Mu L_a))) ->
-- fmapL (L_a (Mu L_a)) (Mu L_a) (wrap L_a fmapL) (
-- swap (Mu L_a) f_x)))
)
-- type L_a x = z -> (a -> x -> z) -> z
(\(x:*) -> forall (z:*) -> z -> (a -> x -> z) -> z)
-- data Mu f = Mu (forall x . (f x -> x) -> x)
(\(f : * -> *) -> forall (x:*) -> (f x -> x) -> x)
-- data Nu g = forall s . Nu (s -> g s) s
(\(g : * -> *) -> forall (y:*) -> (forall (s:*) -> (s -> g s) -> s -> y) -> y)
-- fmapL :: (x -> y) -> L_a x -> L_a y
-- fmapL f la_x empty cons = la_x empty (\va vx -> cons va (f vx))
( \(x:*)
-> \(y:*)
-> \(f : x -> y)
-> \(la_x : forall (z:*) -> z -> (a -> x -> z) -> z)
-> \(z:*)
-> \(empty : z)
-> \(cons : a -> y -> z)
-> la_x z empty (\(va:a) -> \(vx:x) -> cons va (f vx))
)
-- fold :: (f x -> x) -> Mu f -> x
-- fold alg (Mu mu_f) = mu_f alg
( \(f : * -> *)
-> \(x:*)
-> \(alg : f x -> x)
-> \(mu_f : forall (x:*) -> (f x -> x) -> x)
-> mu_f x alg
)
-- wrap :: f (Mu f) -> Mu f
-- wrap f_mu_f = Mu (\alg -> alg (fmap (fold alg) f_mu_f)))
(
( \(Mu : (* -> *) -> *)
-> \(fold : forall (f : * -> *) -> forall (x:*) -> (f x -> x) -> Mu f -> x)
-> \(f : * -> *)
-> \(fmap : forall (x:*) -> forall (y:*) -> (x -> y) -> f x -> f y)
-> \(f_mu_f : f (Mu f))
-> \(y:*) -> \(alg : f y -> y)
-> alg (fmap (Mu f) y (fold f y alg) f_mu_f)
)
-- Mu
(\(f : * -> *) -> forall (x:*) -> (f x -> x) -> x)
-- fold
( \(f : * -> *)
-> \(x:*)
-> \(alg : f x -> x)
-> \(mu_f : forall (x:*) -> (f x -> x) -> x)
-> mu_f x alg
)
)
-- unfold :: (s -> g s) -> s -> Nu g
-- unfold coalg vs = Nu coalg vs
( \(g : * -> *)
-> \(s : *)
-> \(coalg : s -> g s)
-> \(vs : s)
-> \(y : *)
-> \(caseNu : forall (s:*) -> (s -> g s) -> s -> y)
-> caseNu s coalg vs
)
-- unwrap :: Nu g -> g (Nu g)
-- unwrap (Nu coalg vs) = fmap (unfold coalg) (coalg vs)
(
( \(Nu : (* -> *) -> *)
-> \(unfold : forall (g: * -> *) -> forall (s:*) -> (s -> g s) -> s -> Nu g)
-> \(g : * -> *)
-> \(fmap : forall (x:*) -> forall (y:*) -> (x -> y) -> g x -> g y)
-> \(nu_g : forall (y:*) -> (forall (s:*) -> (s -> g s) -> s -> y) -> y)
-> nu_g (g (Nu g)) (\(s:*) -> \(coalg : s -> g s) -> \(vs:s)
-> fmap s (Nu g) (unfold g s coalg) (coalg vs))
)
-- Nu
(\(g : * -> *) -> forall (y:*) -> (forall (s:*) -> (s -> g s) -> s -> y) -> y)
-- unfold
( \(g : * -> *)
-> \(s : *)
-> \(coalg : s -> g s)
-> \(vs : s)
-> \(y : *)
-> \(caseNu : forall (s:*) -> (s -> g s) -> s -> y)
-> caseNu s coalg vs
)
)
-- swap :: L_a (L_a x) -> L_a (L_a x)
-- swap Empty = Empty
-- swap (Cons a Empty) = Cons a Empty
-- swap (Cons a1 (Cons a2 x)) = Cons (min a1 a2) (Cons (max a1 a2) x)
(
( \(L_a : * -> *)
-> \(empty : forall (x:*) -> L_a x)
-> \(cons : forall (x:*) -> a -> x -> L_a x)
-> \(caseLa : forall (x:*) -> L_a x -> forall (z:*) -> z -> (a -> x -> z) -> z)
-> \(x:*)
-> \(outer : L_a (L_a x))
-> caseLa (L_a x) outer (L_a (L_a x))
(empty (L_a x))
(\(vaa : a) -> \(inner : L_a x) -> caseLa x inner (L_a (L_a x))
(cons (L_a x) vaa (empty x))
(\(vab : a) -> \(vx : x) ->
(cons (L_a x) (min vaa vab) (cons x (max vaa vab) vx))))
)
-- L_a
(\(x:*) -> forall (z:*) -> z -> (a -> x -> z) -> z)
-- empty
(\(x:*) -> \(z:*) -> \(empty : z) -> \(cons : a -> x -> z) -> empty)
-- cons
(\(x:*) -> \(head : a) -> \(tail : x) ->
\(z:*) -> \(empty : z) -> \(cons : a -> x -> z) ->
cons head tail)
-- caseLa
(\(x:*) -> \(lax : forall (z:*) -> z -> (a -> x -> z) -> z) -> lax)
)
)
It would still be interesting to compare the reduced code to the Core that GHC produces or to see if one can encode tree sort and merge sort in Morte as well.
- What I mean with non-recursive is that they avoid general recursion and are defined using only primitive recursion. ↩
No comments:
Post a Comment